Calpain A modulates Toll responses by limited Cactus/IκB proteolysis
نویسندگان
چکیده
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.
منابع مشابه
The Ca2+-dependent protease Calpain A regulates Cactus/IκB levels during Drosophila development in response to maternal Dpp signals
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of t...
متن کاملThe IRAK Homolog Pelle Is the Functional Counterpart of IκB Kinase in the Drosophila Toll Pathway
Toll receptors transduce signals that activate Rel-family transcription factors, such as NF-κB, by directing proteolytic degradation of inhibitor proteins. In mammals, the IκB Kinase (IKK) phosphorylates the inhibitor IκBα. A βTrCP protein binds to phosphorylated IκBα, triggering ubiquitination and proteasome mediated degradation. In Drosophila, Toll signaling directs Cactus degradation via a s...
متن کاملToll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila
The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss ...
متن کاملA facilitated diffusion mechanism establishes the Drosophila Dorsal gradient.
The transcription factor NF-κB plays an important role in the immune system, apoptosis and inflammation. Dorsal, a Drosophila homolog of NF-κB, patterns the dorsal-ventral axis in the blastoderm embryo. During this stage, Dorsal is sequestered outside the nucleus by the IκB homolog Cactus. Toll signaling on the ventral side breaks the Dorsal/Cactus complex, allowing Dorsal to enter the nucleus ...
متن کاملRole for Sumoylation in Systemic Inflammation and Immune Homeostasis in Drosophila Larvae
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failur...
متن کامل